题目 | Array Painting
Educational Codeforces Round 152 (Rated for Div. 2)
D. Array Painting
https://codeforces.com/contest/1849/problem/D
2 seconds / 256 megabytes
standard input / standard output
Problem
You are given an array of $n$ integers, where each integer is either $0$, $1$, or $2$. Initially, each element of the array is blue.
Your goal is to paint each element of the array red. In order to do so, you can perform operations of two types:
- pay one coin to choose a blue element and paint it red;
- choose a red element which is not equal to $0$ and a blue element adjacent to it, decrease the chosen red element by $1$, and paint the chosen blue element red.
What is the minimum number of coins you have to spend to achieve your goal?
Input
The first line contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$).
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($0 \le a_i \le 2$).
Output
Print one integer — the minimum number of coins you have to spend in order to paint all elements red.
Examples
Input
3
0 2 0
Output
1
Input
4
0 0 1 1
Output
2
Input
7
0 1 0 0 1 0 2
Output
4
Note
In the first example, you can paint all elements red with having to spend only one coin as follows:
- paint the $2$-nd element red by spending one coin;
- decrease the $2$-nd element by $1$ and paint the $1$-st element red;
- decrease the $2$-nd element by $1$ and paint the $3$-rd element red.
In the second example, you can paint all elements red spending only two coins as follows:
- paint the $4$-th element red by spending one coin;
- decrease the $4$-th element by $1$ and paint the $3$-rd element red;
- paint the $1$-st element red by spending one coin;
- decrease the $3$-rd element by $1$ and paint the $2$-nd element red.
题解
首先,对于不为 $0$ 的位,肯定是优先考虑的,因为对于它们,首先使用一个硬币“激活”为红色后,可以免费将旁边 $1$ 或 $2$ 个块转变为红色。如果旁边也是不为 $0$ 的块,有可能还发生链式反应。可将链式反应分成三类:
- 第 $i$ 位为 $0$:花一个硬币“激活”为后,只有第 $i$ 位变红,总区间为 $[i,i]$。
第 $i$ 位为 $1$:花一个硬币“激活”为后,除了第 $i$ 位变红还有:
- 如果选择左侧,则从第 $i-1$ 位开始到左侧第一个 $0$ 结束都能链式变红,总区间为 $[左侧第一个0,i]$.
- 如果选择右侧,则从第 $i+1$ 位开始到右侧第一个 $0$ 结束都能链式变红,总区间为 $[i,右侧第一个0]$.
第 $i$ 位为 $2$:花一个硬币“激活”为后,除了第 $i$ 位变红还有:
- 对于左侧,从第 $i-1$ 位开始到左侧第一个 $0$ 结束都能链式变红。
- 对于右侧,从第 $i+1$ 位开始到右侧第一个 $0$ 结束都能链式变红。
- 总区间为 $[左侧第一个0,右侧第一个0]$
从左到右扫描一遍每个点,将每个点能够变红的区间储存下来,对于每个区间,使用 $1$ 个硬币即可变红。接下来使用贪心思想取区间即可,贪心思想就是如果要将第 $i$ 个点变红,则区间的左端点必须满足 $l\leq i$. 为了节省硬币,我们希望在左端点满足条件的区间内,选择右端点 $r$ 最大的区间,然后将 $i$ 更新为 $r+1$.
代码
#include <bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
void solve()
{
int n;
cin >> n;
vector<int> a(n + 10);
for (int i = 1; i <= n; i++)
cin >> a[i];
vector<int> pre(n + 10), nxt(n + 10);
for (int i = 1; i <= n; i++)
{
if (a[i - 1])
pre[i] = pre[i - 1];
else
pre[i] = i - 1;
}
for (int i = n; i >= 1; i--)
{
if (a[i + 1])
nxt[i] = nxt[i + 1];
else
nxt[i] = i + 1;
}
// for (int i = 1; i <= n; i++)
// cout << pre[i] << " \n"[i == n];
// for (int i = 1; i <= n; i++)
// cout << nxt[i] << " \n"[i == n];
vector<pair<int, int>> pv;
for (int i = 1; i <= n; i++)
{
if (a[i] == 0)
{
pv.push_back({i, i});
}
else if (a[i] == 1)
{
pv.push_back({i, nxt[i]});
pv.push_back({pre[i], i});
}
else // if (a[i] == 2)
{
pv.push_back({pre[i], nxt[i]});
}
}
sort(pv.begin(), pv.end());
int ans = 0, idx = 0;
for (int i = 1; i <= n; i++)
{
int l = -1, r = -1;
for (; idx < pv.size(); idx++)
{
if (!(l == -1 || pv[idx].first <= i))
break;
l = pv[idx].first;
r = pv[idx].second;
}
ans += max(0LL, l - i);
ans++;
i = r;
}
cout << ans << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
solve();
return 0;
}
本文采用 CC BY-SA 4.0 许可,本文 Markdown 源码:Haotian-BiJi