题目 | Monocarp and the Set
Educational Codeforces Round 156 (Rated for Div. 2)
D. Monocarp and the Set
https://codeforces.com/contest/1886/problem/D
2 seconds / 256 megabytes
standard input / standard output
Problem
Monocarp has $n$ numbers $1, 2, \dots, n$ and a set (initially empty). He adds his numbers to this set $n$ times in some order. During each step, he adds a new number (which has not been present in the set before). In other words, the sequence of added numbers is a permutation of length $n$.
Every time Monocarp adds an element into the set except for the first time, he writes out a character:
- if the element Monocarp is trying to insert becomes the maximum element in the set, Monocarp writes out the character >;
- if the element Monocarp is trying to insert becomes the minimum element in the set, Monocarp writes out the character <;
- if none of the above, Monocarp writes out the character ?.
You are given a string $s$ of $n-1$ characters, which represents the characters written out by Monocarp (in the order he wrote them out). You have to process $m$ queries to the string. Each query has the following format:
- $i$ $c$ — replace $s_i$ with the character $c$.
Both before processing the queries and after each query, you have to calculate the number of different ways to order the integers $1, 2, 3, \dots, n$ such that, if Monocarp inserts the integers into the set in that order, he gets the string $s$. Since the answers might be large, print them modulo $998244353$.
Input
The first line contains two integers $n$ and $m$ ($2 \le n \le 3 \cdot 10^5$; $1 \le m \le 3 \cdot 10^5$).
The second line contains the string $s$, consisting of exactly $n-1$ characters <, > and/or ?.
Then $m$ lines follow. Each of them represents a query. Each line contains an integer $i$ and a character $c$ ($1 \le i \le n-1$; $c$ is either <, >, or ?).
Output
Both before processing the queries and after each query, print one integer — the number of ways to order the integers $1, 2, 3, \dots, n$ such that, if Monocarp inserts the integers into the set in that order, he gets the string $s$. Since the answers might be large, print them modulo $998244353$.
Examples
Input
6 4
<?>?>
1 ?
4 <
5 <
1 >
Output
3
0
0
0
1
Input
2 2
>
1 ?
1 <
Output
1
0
1
Note
In the first example, there are three possible orderings before all queries:
- $3, 1, 2, 5, 4, 6$;
- $4, 1, 2, 5, 3, 6$;
- $4, 1, 3, 5, 2, 6$.
After the last query, there is only one possible ordering:
- $3, 5, 4, 6, 2, 1$.
题解
初始情况
逆向思维考虑,初始集合内完整地包含数字 $1\sim n$,从右向左遍历操作序列 $s$,设此时集合大小 $k$:
- 如果 $s_i=\text{'>'}$:删除集合中最大值,只有 $1$ 种情况。
- 如果 $s_i=\text{'<'}$:删除集合中最小值,只有 $1$ 种情况。
- 如果 $s_i=\text{'?'}$:删除集合中任意非最值,有 $k-2$ 种情况。
要获得情况数的话,只需要将每次操作的情况数累乘就好了,并不需要考虑具体的操作数是多少,并且每次操作之间是独立的。
综上,要计算初始情况的情况数,只需 $O(n)$ 的遍历即可。
后续操作
后续操作每次会修改操作序列的一位,通过上面的分析可以知道,修改后只有这一次的情况数会改变,那么对答案乘除即可:
- 如果 $s_i$ 由
>
/<
变成?
,那么情况数应当 $\times (k-2)$. - 如果 $s_i$ 由
?
变成>
/<
,那么情况数应当 $\div (k-2)$.
由于答案对 $998244353$ 取模,那么除法转换为乘法逆元即可。
非法情况
对于一个操作序列 $s$,还需要考虑该序列是否合法。
- 第二次插入时,如果插入数比第一次大,则 $s_1=\text{'>'}$
- 第二次插入时,如果插入数比第一次小,则 $s_1=\text{'<'}$
因此,对于一个操作序列,$s_1$ 不可能为 ?
,因此直接判断第一位即可,如果为 ?
则不合法, 应当输出 0.
代码
#include <bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
constexpr int MOD = 998244353;
int qpow(int a, int b)
{
a %= MOD;
int ans = 1;
while (b)
{
if (b % 2)
ans = ans * a % MOD;
a = a * a % MOD;
b /= 2;
}
return ans;
}
void solve()
{
int n, m;
cin >> n >> m;
string s;
cin >> s;
int ans = 1;
for (int i = 1; i < s.size(); i++)
if (s[i] == '?')
ans = ans * i % MOD;
cout << (s[0] == '?' ? 0 : ans) << endl;
for (int i = 0; i < m; i++)
{
int x;
char c;
cin >> x >> c;
x--;
if (x)
{
if (s[x] == '?' && c != '?')
ans = ans * qpow(x, MOD - 2) % MOD;
else if (s[x] != '?' && c == '?')
ans = ans * x % MOD;
}
s[x] = c;
cout << (s[0] == '?' ? 0 : ans) << endl;
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
// cin >> t;
while (t--)
solve();
return 0;
}
本文采用 CC BY-SA 4.0 许可,本文 Markdown 源码:Haotian-BiJi