题目 | Neutral Tonality
Codeforces Round 908 (Div. 2)
D. Neutral Tonality
https://codeforces.com/contest/1894/problem/D
3 seconds / 512 megabytes
standard input / standard output
Problem
You are given an array $a$ consisting of $n$ integers, as well as an array $b$ consisting of $m$ integers.
Let $\text{LIS}(c)$ denote the length of the longest increasing subsequence of array $c$. For example, $\text{LIS}([2, \underline{1}, 1, \underline{3}])$ = $2$, $\text{LIS}([\underline{1}, \underline{7}, \underline{9}])$ = $3$, $\text{LIS}([3, \underline{1}, \underline{2}, \underline{4}])$ = $3$.
You need to insert the numbers $b_1, b_2, \ldots, b_m$ into the array $a$, at any positions, in any order. Let the resulting array be $c_1, c_2, \ldots, c_{n+m}$. You need to choose the positions for insertion in order to minimize $\text{LIS}(c)$.
Formally, you need to find an array $c_1, c_2, \ldots, c_{n+m}$ that simultaneously satisfies the following conditions:
- The array $a_1, a_2, \ldots, a_n$ is a subsequence of the array $c_1, c_2, \ldots, c_{n+m}$.
- The array $c_1, c_2, \ldots, c_{n+m}$ consists of the numbers $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m$, possibly rearranged.
- The value of $\text{LIS}(c)$ is the minimum possible among all suitable arrays $c$.
Input
Each test contains multiple test cases. The first line contains a single integer $t$ $(1 \leq t \leq 10^4)$ — the number of test cases. The description of the test cases follows.
The first line of each test case contains two integers $n, m$ $(1 \leq n \leq 2 \cdot 10^5, 1 \leq m \leq 2 \cdot 10^5)$ — the length of array $a$ and the length of array $b$.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ $(1 \leq a_i \leq 10^9)$ — the elements of the array $a$.
The third line of each test case contains $m$ integers $b_1, b_2, \ldots, b_m$ $(1 \leq b_i \leq 10^9)$ — the elements of the array $b$.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2\cdot 10^5$, and the sum of $m$ over all test cases does not exceed $2\cdot 10^5$.
Output
For each test case, output $n + m$ numbers — the elements of the final array $c_1, c_2, \ldots, c_{n+m}$, obtained after the insertion, such that the value of $\text{LIS}(c)$ is minimized. If there are several answers, you can output any of them.
Example
Input
7
2 1
6 4
5
5 5
1 7 2 4 5
5 4 1 2 7
1 9
7
1 2 3 4 5 6 7 8 9
3 2
1 3 5
2 4
10 5
1 9 2 3 8 1 4 7 2 9
7 8 5 4 6
2 1
2 2
1
6 1
1 1 1 1 1 1
777
Output
6 5 4
1 1 7 7 2 2 4 4 5 5
9 8 7 7 6 5 4 3 2 1
1 3 5 2 4
1 9 2 3 8 8 1 4 4 7 7 2 9 6 5
2 2 1
777 1 1 1 1 1 1
Note
In the first test case, $\text{LIS}(a) = \text{LIS}([6, 4]) = 1$. We can insert the number $5$ between $6$ and $4$, then $\text{LIS}(c) = \text{LIS}([6, 5, 4]) = 1$.
In the second test case, $\text{LIS}([\underline{1}, 7, \underline{2}, \underline{4}, \underline{5}])$ = $4$. After the insertion, $c = [1, 1, 7, 7, 2, 2, 4, 4, 5, 5]$. It is easy to see that $\text{LIS}(c) = 4$. It can be shown that it is impossible to achieve $\text{LIS}(c)$ less than $4$.
题解
首先需要注意到,将 $b$ 序列插入 $a$ 序列是不可能降低 $a$ 序列原有的 $\text{LIS}$ 长度的。题目让我们最小化 $\text{LIS}$ 长度,则意义是让我们最小化 $\Delta\text{LIS}$.
最基本的,我们插入的序列必须是降序的,如此能保证插入的 $b$ 序列自身不会产生上升子序列,避免 $\text{LIS}$ 长度增长。所以首先将 $b$ 序列排序为降序。
接下来,若插入的值与原序列形成的都是降序段,则不会使 $\text{LIS}$ 长度增长。因此,可以将每个数都插入到原序列比它小的数左边。对于一个序列 $3,1,5$,如果要插入 $6,4,2$,变成 $\underline{6},\underline{4},3,\underline{2},1,5$,不会导致 $\text{LIS}$ 长度增长。
因此,这道题的最优解实际上 $\Delta\text{LIS}=0$.
代码实现上其实非常简单,和归并排序的合并过程是一样的写法。
代码
#include <bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
void solve()
{
int n, m;
cin >> n >> m;
vector<int> a(n), b(m);
for (int i = 0; i < n; i++)
cin >> a[i];
for (int i = 0; i < m; i++)
cin >> b[i];
sort(b.begin(), b.end(), greater<int>());
int i = 0, j = 0;
while (i < n && j < m)
{
if (a[i] <= b[j])
cout << b[j++] << ' ';
else
cout << a[i++] << ' ';
}
for (; i < n; i++)
cout << a[i] << ' ';
for (; j < m; j++)
cout << b[j] << ' ';
cout << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
solve();
return 0;
}
本文采用 CC BY-SA 4.0 许可,本文 Markdown 源码:Haotian-BiJi