Codeforces Round #853 (Div. 2)

D. Serval and Shift-Shift-Shift

https://codeforces.com/contest/1789/problem/D

2 seconds / 256 megabytes

standard input / standard output

Problem

Serval has two n-bit binary integer numbers a and b. He wants to share those numbers with Toxel.

Since Toxel likes the number b more, Serval decides to change a into b by some (possibly zero) operations. In an operation, Serval can choose any positive integer k between 1 and n, and change a into one of the following number:

  • a(ak)
  • a(ak)

In other words, the operation moves every bit of a left or right by k positions, where the overflowed bits are removed, and the missing bits are padded with 0. The bitwise XOR of the shift result and the original a is assigned back to a.

Serval does not have much time. He wants to perform no more than n operations to change a into b. Please help him to find out an operation sequence, or determine that it is impossible to change a into b in at most n operations. You do not need to minimize the number of operations.

In this problem, xy denotes the bitwise XOR operation of x and y. ak and ak denote the logical left shift and logical right shift.

Input

Each test contains multiple test cases. The first line contains the number of test cases t (1t2103). The description of the test cases follows.

The first line of each test case contains a single integer n (1n2103) — the number of bits in numbers a and b.

The second and the third line of each test case contain a binary string of length n, representing a and b, respectively. The strings contain only characters 0 and 1.

It is guaranteed that the sum of n over all test cases does not exceed 2103.

Output

For each test case, if it is impossible to change a into b in at most n operations, print a single integer 1.

Otherwise, in the first line, print the number of operations m (0mn).

If m>0, in the second line, print m integers k1,k2,,km representing the operations. If 1kin, it means logical left shift a by ki positions. If nki1, it means logical right shift a by ki positions.

If there are multiple solutions, print any of them.

Example

Input

3
5
00111
11000
1
1
1
3
001
000

Output

2
3 -2
0
-1

Note

In the first test case:

The first operation changes a into 0011100111000=11111.

The second operation changes a into 111110011111=11000.

The bits with strikethroughs are overflowed bits that are removed. The bits with underline are padded bits.

In the second test case, a is already equal to b, so no operations are needed.

In the third test case, it can be shown that a cannot be changed into b.

题解

这道题是一道构造题,我们的思路就是如何构造一种通法来解决这个问题。

不成立的情形

按位异或时,每一个二进制位具有以下特性(¬ 符号指取反):

0bit=bit1bit=¬bit

那么我们可以发现,只有 1 能对二进制位进行改变,0 无法产生变化。那么,如果有一个串全为 0,我们无论如何都没法改变它的值。

由此我们就能推出不成立的情形,即:若 abab 全零,则这种情况不成立,输出 1.

如何构造通解

首先注意到 n 的规模仅有 2103,足够我们可以模拟每次操作。并且题目没有要求将步数最小化,那么就没必要研究各种情况的特点,直接考虑所有情况的通用解法就行。

a=10010, b=10101,先右移两位进行操作:

100101001010110

再右移三位进行操作:

101101011010100

再右移四位进行操作:

101001010010101

我们可以发现,操作的实质就是用最左边一位的 1 右移到对应位置,从左到右把和 b 不同的位变成相同的位,最后就能将 a 变为 b.

在调整一位的适合,可能会有副作用,导致右边有已经一致的位又变得不一致,但这也没有关系,因为我们是从左到右进行操作的,发生变化的只有可能是右侧部分,每一次操作后我们能保证左侧部分已经一致。

此时还有一个问题,如果 a 的最左边一位不是 1,就没法用它来调整右侧位了。此时我们可以首先构造最左侧的 1,即用最右侧的 1 左移到最左侧,把最左侧变成 1

000110001110011

这样就成功构造最左侧的 1 了,如果答案 b 最左侧不是 1,我们在进行完所有操作后,还得把最左侧的 1 还原成 0,方法也是一样:

100111001100011

如何确保步数限制

题目要求步数限制不超过 n,由于上面这个思路定死了:用最左侧的 1 从左到右进行操作。所以有些情况会超出步数限制:1 步构造最左侧的 1n1 步调整右侧位,1 步还原最左侧的 1。超过步数限制时,此时就得反着来,用最右侧的 1 从右到左进行操作,就能符合步数限制。

反着来时,没有必要再反着写一遍代码,直接把串 a,b 逆序跑一遍原算法,把结果取相反数即可,更加方便。

代码

#include <bits/stdc++.h>
#define endl '\n'

using namespace std;

vector<int> getans(string a, string b)
{
    vector<int> ans;
    int n = a.size();
    if (a[0] == '0')
    {
        int t = n - 1;
        while (a[t] == '0')
            t--;
        ans.push_back(t);
        a[0] = '1';
    }
    for (int i = 1; i < n; i++)
    {
        if (a[i] != b[i])
        {
            ans.push_back(-i);
            string t = a;
            for (int j = 0; j < n; j++)
            {
                if (i + j >= n)
                    break;
                if (t[j] == a[i + j])
                    a[i + j] = '0';
                else
                    a[i + j] = '1';
            }
        }
    }
    if (b[0] == '0')
    {
        int t = n - 1;
        while (a[t] == '0')
            t--;
        ans.push_back(t);
        a[0] = '0';
    }
    return ans;
}

void solve()
{
    int n;
    cin >> n;
    string a, b;
    cin >> a >> b;
    if (a == b)
    {
        cout << 0 << endl;
        return;
    }
    if (a.find('1') == a.npos ||
        b.find('1') == b.npos)
    {
        cout << -1 << endl;
        return;
    }
    vector<int> ans = getans(a, b);
    if (ans.size() <= n)
    {
        cout << ans.size() << endl;
        for (auto ele : ans)
            cout << ele << ' ';
        cout << endl;
        return;
    }
    reverse(a.begin(), a.end());
    reverse(b.begin(), b.end());
    ans = getans(a, b);
    cout << ans.size() << endl;
    for (auto ele : ans)
        cout << -ele << ' ';
    cout << endl;
    return;
}

int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int t;
    cin >> t;
    while (t--)
        solve();
    return 0;
}